A concise and efficient solid-phase synthesis of 2-amino-4(3H)-quinazolinones

Rui-Yang Yang* and Alan Kaplan
ArQule, Inc., 19 Presidential Way, Woburn, MA 01801, USA

Received 17 June 2000; revised 7 July 2000; accepted 11 July 2000

Abstract

A concise and efficient solid-phase synthesis of 2-amino-4(3H)-quinazolinones is described. Reaction of polymer-bound isothiourea with isatoic anhydride provides 2 -amino-4(3 H)-quinazolinones with good yields and excellent purity. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: quinazolinones; thioformamidines; solid-phase synthesis.

The high-throughput syntheses of small organic molecules in both solution-phase and on solid support has become a routine practice for lead discovery and lead optimization in pharmaceutical research. As a result, the development of reaction conditions suitable for automated parallel chemistry has attracted substantial attention in the past few years. ${ }^{1,2}$

4(3H)-Quinazolinone has been identified as an important class of heterocyclic compounds in medicinal chemistry, having anticonvulsant, ${ }^{3}$ antihypertensive, ${ }^{4}$ antidiabetic, ${ }^{5}$ and anti-tumor ${ }^{6}$ activity. Antimicrobial and antihistaminic activities have also been documented. ${ }^{7}$ A number of syntheses of these types of compounds has previously been reported. Recently, Mayer and co-workers ${ }^{8}$ disclosed a solid-phase synthesis approach to 2 -alkyl substituted analogs. Villalgordo and co-workers ${ }^{9}$ reported a solid-phase synthesis based on an aza Wittig-mediated annulation strategy; however, a mixture of two isomers was formed. More recently, a paper by Gopalsamy ${ }^{10}$ disclosed a related solid-phase synthesis of 2-amino-4(3H)-quinazolinones. Our approach differs from those previously reported in its efficiency of chemical steps and feasibility of side-chain functionality.

The general approach for the solid-phase synthesis of 2-amino-4(3H)-quinazolinones is shown in Scheme 1. Thiourea $\mathbf{1}$ is efficiently loaded to a chloromethylated polystyrene resin 2 (2% DVB Merrifield resin, $2.3 \mathrm{mmol} / \mathrm{g}$) in DMF at $80^{\circ} \mathrm{C}$ to form the polymer-bound isothiourea 3. The results for the conversion of chloro resin $\mathbf{2}$ to isothiourea $\mathbf{3}$ are summarized in Table 1. All the conversions are nearly quantitative, as determined by microanalysis of sulfur and nitrogen of

[^0]
1
2
3

Scheme 1.

Table 1
Conversion of resin 2 to polymer-bound isothiourea 3

Entry	Resin 3 R_{1}	Theo.Loading $^{\mathrm{a}}$ $\mathrm{mmol} / \mathrm{g}$	Loading $^{\mathrm{b}}$ $\mathrm{mmol} / \mathrm{g}$	Conversion $\%$
1	Et	1.86	1.81	97
2	Allyl	1.82	1.80	99
3	Cyclohexyl	1.69	1.64	97
4	Ph	1.70	1.65	97

a. Theoretical loading is calculated based on 100% conversion.
b. Calculated based on the microanalysis results of S and N of polymer-bound 3 .
polymer-bound 3. Reaction of $\mathbf{3}$ with isatoic anhydride $\mathbf{4}$ in DMF in the presence of diisopropylethylamine at $80^{\circ} \mathrm{C}$ afforded 2-amino-4(3H)-quinazolinones 5. These products were formed via acylation of the polymer-bound isothiourea 3 by isatoic anhydride 4, followed by cleavage of the resulting product via an intramolecular cyclization. Results are summarized in Table 2. Unlike most solid-phase chemistries that require a large excess of reagents to push the reactions to completion, this reaction proceeds well with a stoichiometric amount of isatoic anhydride 4. Reaction conditions are general with respect to both the thiourea and the isatoic anhydride. All the desired products 5 were obtained in good to high yields with excellent purity. The results are reported as isolated yields and calculated based on the amount of compound 4 used in the reaction. Purity was determined by HPLC analysis of crude product 5 by both UV and ELSD. All of the products were also fully characterized by ${ }^{1} \mathrm{H}$ NMR and mass spectrometric techniques. ${ }^{11}$

In summary, we have disclosed a concise and efficient synthesis of 2-amino-4(3H)-quinazolinones on solid support. This protocol only requires a two-step procedure and provides 2 -amino-4(3H)-

Table 2
Solid-phase synthesis of 2-amino-4(3H)-quinazolinones 5

Entry	Product 5	Yield ${ }^{\text {a }}$	Purity ${ }^{\text {b }}$
1		65\%	93\% (100\%)
2	 5b	67\%	97\% (1.00\%)
3	 5c	76\%	96\% (100\%)
4	 5d	64\%	98\% (100\%)
5		88\%	97\% (100\%)
6	 5f	88\%	94\% (100\%)
7		81\%	100\% (100\%)
8		53\%	84\% (90\%)
9		80\%	95\% (100\%)
10		60\%	94\% (100\%)

a. Yields are calculated based on the quantity of $\mathbf{4}$ used. b. Purity was determined by HPLC using both UV $(254 \mathrm{~nm})$ and ELSD detectors, numbers in the brackets are from ELSD detector.
quinazolinones in good yield with excellent purity. Both building blocks mono-substituted thioureas and isatoic anhydrides used in this chemistry are readily available from commercial sources or can be easily synthesized. ${ }^{12,13}$ Unlike the method reported by Gopalsamy, ${ }^{10}$ which involved the release of foul smelling methylthiol, the thiol generated in this method remains attached to the solid support, thus providing a more environmentally benign and practical synthesis of 2 -amino- $4(3 \mathrm{H})$-quinazolinones.

Acknowledgements

The authors thank the Analytical Department for the mass spectrometric analysis.

References

1. For excellent reviews on solid-phase synthesis, see: (a) Special Issue on Combinatorial Chemistry, Chem. Rev. 1997, 97, 349. (b) Acc. Chem. Res. 1996, 29, No. 3. (c) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1996, 52, 4527. (d) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1997, 53, 5643.
(e) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1998, 54, 15385.
2. For solution phase synthesis, see: Gayo, L. M. Biotech. Bioeng. (Combi. Chem.) 1998, 61, 95.
3. (a) Mannschreck, A.; Koller, H.; Stuhler, G.; Davies, M. A.; Traber, J. Eur. J. Med. Chem. 1984, 19, 381. (b) Gupta, C. M.; Bhaduri, A. P.; Khanna, N. M. J. Med. Chem. 1968, 11, 392.
4. (a) Hess, H. J.; Cronin, T. H.; Scriabine, A. J. Med. Chem. 1968, 11, 130. (b) Hussain, M. A.; Chiu, A. T.; Price, W. A.; Timmermans, P. B.; Shefter, E. Pharm. Res. 1988, 5, 242.
5. Malamas, M. S.; Millen, J. J. Med. Chem. 1991, 34, 1492.
6. (a) Baek, D.-J.; Park, Y.-K.; Heo, H. I.; Lee, M.; Yang, Z.; Choi, M. Bioorg. Med. Chem. Lett. 1998, 8, 3287. (b) Webber, S. E.; Bleckman, T. M.; Attard, J.; Deal, J. G.; Kathardekar, V.; Welsh, K. M.; Webber, S.; Janson, C. et al. J. Med. Chem. 1993, 36, 733.
7. Omar, A. M. M. E.; El-Din, S. A. S.; Labouta, I. M.; El-Tambary, A. A. Alexandria, J. Pharm. Sci. 1991, 5, 94.
8. Mayer, J. P.; Lewis, G. S.; Curtis, M. J.; Zhang, J. Tetrahedron Lett. 1997, 38, 8445.
9. Villalgordo, J. M.; Obrecht, D.; Chucholowsky, A. Synlett 1998, 1405.
10. Gopalsamy, A.; Yang, H. J. Comb. Chem. 2000, in press.
11. Compound 5a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 4.30(\mathrm{~s}, 3 \mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.51(\mathrm{~d}, 1 \mathrm{H}, J=18.0 \mathrm{~Hz}), 7.26(\mathrm{br}$, $1 \mathrm{H}), 7.42(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.87(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 202\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound 5b: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.60(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~s}, 3 \mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.52(\mathrm{~d}, 1 \mathrm{H}, J=18.0 \mathrm{~Hz}), 6.18(\mathrm{~m}$, $1 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.99(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 236\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound $5 \mathrm{c}:{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 4.25(\mathrm{~s}, 3 \mathrm{H}), 5.37(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.48(\mathrm{~d}, 1 \mathrm{H}, J=18.0 \mathrm{~Hz}), 6.17(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{br}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.07(\mathrm{~s}, 1 \mathrm{H})$; MS $(\mathrm{m} / z): 216\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound $\mathbf{5 d}:{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 4.05(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.48(\mathrm{~d}, 1 \mathrm{H}, J=18.0$ $\mathrm{Hz}), 6.64(\mathrm{br}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H})$; MS (m / z) : $292\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound $5 \mathrm{e}:{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 1.40(\mathrm{t}, 3 \mathrm{H}, J=6.5$ $\mathrm{Hz}), 3.62(\mathrm{q}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 7.28(\mathrm{br}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.07(\mathrm{~s}, 1 \mathrm{H})$; MS ($\mathrm{m} /$ z): $224\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound 5f: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 1.30-2.21(\mathrm{~m}, 10 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{br}, 1 \mathrm{H}), 7.05(\mathrm{br}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.07(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}(m / z): 278\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound $\mathbf{5 g}:{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.30-2.20(\mathrm{~m}, 10 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{br}, 1 \mathrm{H}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=8.5$ $\mathrm{Hz}), 7.88(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 8.18(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 244\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound $\mathbf{5 h}:{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right)$ $\delta 7.18-8.25(\mathrm{~m}, 9 \mathrm{H}), 9.0(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 238\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound 5i: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 1.50(\mathrm{t}, 3 \mathrm{H}, J=6.5$ $\mathrm{Hz}), 3.61(\mathrm{q}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 6.42(\mathrm{br}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 280$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Compound $5 \mathrm{j}:{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 1.35-2.25(\mathrm{~m}, 10 \mathrm{H}), 4.02(\mathrm{~s}, 10 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 6.37$ (br, 1H), $7.40(\mathrm{~s}, 1 \mathrm{H})$; MS $(\mathrm{m} / \mathrm{z}): 334\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
12. For the synthesis of mono-substituted thioureas, see: (a) Moore, M. L.; Crossley, F. S. Org. Synth. 1941, 21, 83. (b) Poss, M. A.; Iwanowicz, E.; Reid, J. A.; Lin, J.; Gu, Z. Tetrahedron Lett. 1992, 33, 5933. (c) Patil, D. G.; Chedekel, M. R. J. Org. Chem. 1984, 49, 997.
13. Coppola, G. M. Synthesis 1980, 505.

[^0]: * Corresponding author. Tel: 1781 994-0358; fax: 1781 376-6019; e-mail: ruiyang@arqule.com

